<電子ブック>
Smooth Four-Manifolds and Complex Surfaces / by Robert Friedman, John W. Morgan
(Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. ISSN:21975655 ; 27)
版 | 1st ed. 1994. |
---|---|
出版者 | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer |
出版年 | 1994 |
本文言語 | 英語 |
大きさ | X, 522 p : online resource |
著者標目 | *Friedman, Robert author Morgan, John W author SpringerLink (Online service) |
件 名 | LCSH:Topology LCSH:Algebraic geometry FREE:Topology FREE:Algebraic Geometry |
一般注記 | I. The Kodaira Classification of Surfaces -- II. The Topology of Elliptic Surfaces -- III. Definition of the Polynomial Invariants -- IV. Holomorphic Vector Bundles, Stability, and Gauge Theory -- V. Donaldson Polynomials of Algebraic Surfaces -- VI. Big Diffeomorphism Groups and Minimal Models -- VII. Donaldson Polynomials of Elliptic Surfaces -- References -- Index of Notation In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions HTTP:URL=https://doi.org/10.1007/978-3-662-03028-8 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783662030288 |
|
電子リソース |
|
EB00232852 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA611-614.97 DC23:514 |
書誌ID | 4000110548 |
ISBN | 9783662030288 |
類似資料
この資料の利用統計
このページへのアクセス回数:4回
※2017年9月4日以降