<電子ブック>
Elementary Symplectic Topology and Mechanics / by Franco Cardin
(Lecture Notes of the Unione Matematica Italiana. ISSN:18629121 ; 16)
版 | 1st ed. 2015. |
---|---|
出版者 | Cham : Springer International Publishing : Imprint: Springer |
出版年 | 2015 |
本文言語 | 英語 |
大きさ | XVII, 222 p. 44 illus., 11 illus. in color : online resource |
著者標目 | *Cardin, Franco author SpringerLink (Online service) |
件 名 | LCSH:Mathematical physics LCSH:Geometry, Differential LCSH:Mathematical optimization LCSH:Calculus of variations FREE:Mathematical Physics FREE:Differential Geometry FREE:Calculus of Variations and Optimization |
一般注記 | Beginning -- Notes on Differential Geometry -- Symplectic Manifolds -- Poisson brackets environment -- Cauchy Problem for H-J equations -- Calculus of Variations and Conjugate Points -- Asymptotic Theory of Oscillating Integrals -- Lusternik-Schnirelman and Morse -- Finite Exact Reductions -- Other instances -- Bibliography This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects HTTP:URL=https://doi.org/10.1007/978-3-319-11026-4 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783319110264 |
|
電子リソース |
|
EB00226587 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QC19.2-20.85 DC23:530.15 |
書誌ID | 4000116363 |
ISBN | 9783319110264 |
類似資料
この資料の利用統計
このページへのアクセス回数:3回
※2017年9月4日以降