Organic

Oncology Research, 13, 463-469 (2003)

Flavonoids as Inhibitors of MRP1-like Efflux Activity in Human Erythrocytes. A Structure-Activity Relationship Study

Malgorzata Bobrowska-Hagerstrand ¹, Anna Wrobel ², Lucyna Mrowczynska ³, Thomas Soderstrom⁴, Yoshiaki Shirataki(白瀧義明)⁵, Noboru Motohashi ⁶, Joseph Molnar ⁷, Krystyna Michalak ⁸ and Henry Hagerstrand ¹

¹Department of Biology, Abo Akademi University, FIN-20520 Abo/Turku, Finland, ²Institute of Physics, Wroclaw University of Technology, PL-50370 Wroclaw, Poland, ³Department of Cytology and Histology, AMickiewicz University, PL-61701, Poznan, Poland, ⁴Turku Center for Biotechnology, University of Turku and Abo Academi University, FIN-20520 Abo/Turku, Finland, ⁵Faculty of Pharmaceutical University, Sakado, Sciences, Josai Saitama 350-0295 ⁶Meiji Japan, Pharmaceutical University, Tokyo, 204-8588 Japan, ⁷Department of Microbiology, Albert Szent-Gyorgyi Madical University, H-6720 Szeged, Hungary, ⁸Department of Biophysics, Wroclaw Medical University, Poland

The potency of flavonoids (isoflavones, flavones, and flavanones) to inhibit efflux of 2',7'-bis-(carboxypropyl)-5(6)-carboxyfluorescein (BCPCF) from human erythrocytes was investigated. Structure-activity relationship analysis showed that the strongest inhibitors were found among flavanones bearing a hydrophobic prenyl, geranyl, or lavandulyl group at position 8 (and hydroxyl groups at 5 and 7) in ring A. A prenyl group at position 5' or stilbene at positions 4'-5' in ring B further seemed to increase inhibitor potency. The most efficient flavanones, euchrestaflavanone A and sophoraflavanone H, were approximately 20 times more efficient than genistein, and induced 50% inhibition of BCPCF efflux (IC₅₀) at 3 microM (60 min, 37 degrees C). This is comparable to IC_{50} of benzbromarone (4) microM) and lower than IC_{50} of indomethacin (10 microM), both known MRP1 (ABCC1) inhibitors. It is suggested that BCPCF efflux is mainly due to MRP1 activity. Our results indicate that flavonoid molecular structure provides a promising base for development of potent MRP1 inhibitors.