
Cytotoxic Activity of Benzothiepins against Human Oral Tumor Cell Lines

Yoshiaki Sugita(a), Hiroki Hosoya(a), Kuniko Terasawa(a),Ichiro Yokoe(a), Seiichiro Fujisawa(b) and Hiroshi Sakagami(c)

aFaculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295; bDepartment of Oral Diagnosis and cDepartment of Dental Pharmacology, Meikai University School of Dentistry, Sakado, Saitama 350-0283

A total of 11 newly synthesized benzothiepins and structurally-related compounds were investigated for cytotoxic activity against both normal and tumor cells. All these compounds showed higher cytotoxic activity against three human oral tumor cell lines (HSC-2, HSC-3, HSG) than against normal human gingival fibroblast (HGF), suggesting tumor-specific cytotoxic action. In general, 3,4-dihydro-1-benzothiepin-5(2H)-ones [1-6] showed higher cytotoxic activity than 2,3-dihydro-1-benzothiepins [7-11]. Compounds 4 (4-bromo-3, 4-dihydro-2-(2-oxo-2-phenylethyl)-1-benzothiepin-5(2H)-one), 5 (4-bromo-3,4-dihydro-2-(2-oxopropyl)-1-benzothiepin-5(2H)-one) and 6 (4-bromo-3,4-dihydro-2-[1-(methoxycarbonyl)-1-methylethyl]-1-benzothiepin-5(2H)-one), showed higher cytotoxic activity than compounds 1, 2 and 3, respectively, which had Cl instead of Br at C-4 position. Agarose gel electrophoresis demonstrated that these compounds induced large DNA fragments in oral tumor cells, whereas they produced smear pattern of smaller DNA fragments in human promyelocytic leukemia cells HL-60. These data suggest the medicinal efficacy of benzothiepins.