Transforming growth factor-β₁ inhibits the growth of primary adult rat hepatocyte cultures by increasing cAMP levels

Mitsutoshi Kimura (木村 光利), and Masahiko Hagihara (荻原 政彦)

We investigated the mechanisms of transforming growth factor-β₁ (TGF-β₁) inhibition of transforming growth factor-α (TGF-α)-induced DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. TGF-α (1.0 ng/ml) produced a 4.2-fold elevation of DNA synthesis during 3 h of culture and a 1.2-fold increase in nucleus number (proliferation) during 4 h of culture. TGF-β₁ dose dependently inhibited the TGF-α-induced hepatocyte DNA synthesis and proliferation: half-maximal inhibition occurred at a TGF-β₁ concentration of 0.08 ng/ml. The inhibitory effects of 1.0 ng/ml TGF-β₁ were almost completely reversed by adenylate cyclase inhibitors, 2, 4-dideoxyadenosine (10⁻⁶ M) and somatostatin (3×10⁻⁷ M), or by a specific inhibitor of protein kinase A, H-89 (N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10⁻⁷ M). In addition, while TGF-α did not affect the basal cellular cAMP levels, TGF-β₁ was found to produce dose-dependent increases in cellular cAMP levels. The cAMP-elevating effects of TGF-β₁ were also reversed by 2, 4-dideoxyadenosine (10⁻⁶ M), and somatostatin (3×10⁻⁷ M), but not by H-89 (10⁻⁷ M). The present results suggest that the specific mechanisms involved in the growth inhibitory effect of TGF-β₁ on TGF-α-induced hepatocyte DNA synthesis and proliferation are via the stimulation of adenylate cyclase, which increases intracellular cAMP and subsequently activates protein kinase A.