<電子ブック>
Search and Optimization by Metaheuristics : Techniques and Algorithms Inspired by Nature / by Ke-Lin Du, M. N. S. Swamy
版 | 1st ed. 2016. |
---|---|
出版者 | Cham : Springer International Publishing : Imprint: Birkhäuser |
出版年 | 2016 |
本文言語 | 英語 |
大きさ | XXI, 434 p. 68 illus., 40 illus. in color : online resource |
著者標目 | *Du, Ke-Lin author Swamy, M. N. S author SpringerLink (Online service) |
件 名 | LCSH:Mathematics -- Data processing
全ての件名で検索
LCSH:Algorithms LCSH:Mathematical optimization LCSH:Computer simulation LCSH:Computational intelligence FREE:Computational Science and Engineering FREE:Algorithms FREE:Optimization FREE:Computer Modelling FREE:Computational Intelligence |
一般注記 | Preface -- Introduction -- Simulated Annealing -- Optimization by Recurrent Neural Networks -- Genetic Algorithms and Genetic Programming -- Evolutionary Strategies -- Differential Evolution -- Estimation of Distribution Algorithms -- Mimetic Algorithms -- Topics in EAs -- Particle Swarm Optimization -- Artificial Immune Systems -- Ant Colony Optimization -- Tabu Search and Scatter Search -- Bee Metaheuristics -- Harmony Search -- Biomolecular Computing -- Quantum Computing -- Other Heuristics-Inspired Optimization Methods -- Dynamic, Multimodal, and Constraint-Satisfaction Optimizations -- Multiobjective Optimization -- Appendix 1: Discrete Benchmark Functions -- Appendix 2: Test Functions -- Index This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods HTTP:URL=https://doi.org/10.1007/978-3-319-41192-7 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783319411927 |
|
電子リソース |
|
EB00239984 |
類似資料
この資料の利用統計
このページへのアクセス回数:4回
※2017年9月4日以降