このページのリンク

<電子ブック>
Basic Structures of Function Field Arithmetic / by David Goss

1st ed. 1998.
出版者 Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer
出版年 1998
本文言語 英語
大きさ XIII, 424 p : online resource
冊子体 Basic structures of function field arithmetic / David Goss
著者標目 *Goss, David author
SpringerLink (Online service)
件 名 LCSH:Number theory
LCSH:Algebraic geometry
FREE:Number Theory
FREE:Algebraic Geometry
一般注記 1. Additive Polynomials -- 1.1. Basic Properties -- 1.2. Classification of Additive Polynomials -- 1.3. The Moore Determinant -- 1.4. The Relationship Between k[x] and k{?} -- 1.5. The p-resultant -- 1.6. The Left and Right Division Algorithms -- 1.7. The ?-adjoint of an Additive Polynomial -- 1.8. Dividing A1 by Finite Additive Groups -- 1.9. Analogs in Differential Equations/Algebra -- 1.10. Divisibility Theory -- 1.11. The Semi-invariants of Additive Polynomials -- 2. Review of Non-Archimedean Analysis -- 3. The Carlitz Module -- 3.1. Background -- 3.2. The Carlitz Exponential -- 3.3. The Carlitz Module -- 3.4. The Carlitz Logarithm -- 3.5. The Polynomials Ed(x) -- 3.6. The Carlitz Module over Arbitrary A-fields -- 3.7. The Adjoint of the Carlitz Module -- 4. Drinfeld Modules -- 4.1. Introduction -- 4.2. Lattices and Their Exponential Functions -- 4.3. The Drinfeld Module Associated to a Lattice -- 4.4. The General Definition of a Drinfeld Module -- 4.5. The Height and Rank of a Drinfeld Module -- 4.6. Lattices and Drinfeld Modules over C? -- 4.7. Morphisms of Drinfeld Modules -- 4.8. Primality in F{?} and A -- 4.9. The Action of Ideals on Drinfeld Modules -- 4.10. The Reduction Theory of Drinfeld Modules -- 4.11. Review of Central Simple Algebra -- 4.12. Drinfeld Modules over Finite Fields -- 4.13. Rigidity of Drinfeld Modules -- 4.14. The Adjoint of a General Drinfeld Module -- 5. T-Modules -- 5.1. Vector Bundles -- 5.2. Sheaves and Differential Equations -- 5.3. ?-sheaves -- 5.4. Basic Concepts of T-modules -- 5.5. Pure T-modules -- 5.6. Torsion Points -- 5.7. Tensor Products -- 5.8. The Tensor Powers of the Carlitz Module -- 5.9. Uniformization -- 5.10. The Tensor Powers of the Carlitz Module redux -- 5.11. Scattering Matrices -- 6. Shtukas -- 6.1. Review of Some Algebraic Geometry -- 6.2. The ShtukaCorrespondence -- 7. Sign Normalized Rank 1 Drinfeld Modules -- 7.1. Class-fields as Moduli -- 7.2. Sign Normalization -- 7.3. Fields of Definition of Drinfeld Modules -- 7.4. The Normalizing Field -- 7.5. Division Fields -- 7.6. Principal Ideal Theorems -- 7.7. A Rank One Version of Serre’s Theorem -- 7.8. Classical Partial Zeta Functions -- 7.9. Unit Calculations -- 7.10. Period Computations -- 7.11. The Connection with Shtukas and Examples -- 8. L-series -- 8.1. The “Complex Plane” S? -- 8.2. Exponentiation of Ideals -- 8.3. ?-adic Exponentiation of Ideals -- 8.4. Continuous Functions on ? p -- 8.5. Entire Functions on S? -- 8.6. L-series of Characteristic p Arithmetic -- 8.7. Formal Dirichlet Series -- 8.8. Estimates -- 8.9. L-series of Finite Characters -- 8.10. The Question of Local Factors -- 8.11. The Generalized Teichmüller Character -- 8.12. Special-values at Negative Integers -- 8.13. Trivial Zeroes -- 8.14. Applications to Class Groups -- 8.15. “Geometric” Versus “Arithmetic” Notions -- 8.16. The Arithmetic Criterion for Cyclicity -- 8.17. The “Geometric Artin Conjecture” -- 8.18. Special-values at Positive Integers -- 8.19. The Functional Equation of the Special-values -- 8.20. Applications to Class Groups -- 8.21. The Geometric Criterion for Cyclicity -- 8.22. Magic Numbers -- 8.23. Finiteness in Local and Global Fields -- 8.24. Towards a Theory of the Zeroes -- 8.25. Kapranov’s Higher Dimensional Theory -- 9. ?-functions -- 9.1. Basic Properties of the Carlitz Factorial -- 9.2. Bernoulli-Carlitz Numbers -- 9.3. The ?-ideal -- 9.4. The Arithmetic ?-function -- 9.5. Functional Equations -- 9.6. Finite Interpolations -- 9.7. Another ?-adic ?-function -- 9.8. Gauss Sums -- 9.9. The Geometric ?-function -- 10. Additional Topics -- 10.1. The Geometric Fermat Equation -- 10.2.Geometric Deligne Reciprocity and Solitons -- 10.3. The Tate Conjecture for Drinfeld Modules -- 10.4. Meromorphic Continuations of L-functions -- 10.5. The Structure of the A-module of Rational Points -- 10.6. Log-algebraicity and Special Points -- References
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Accessibility summary: This PDF is not accessible. It is based on scanned pages and does not support features such as screen reader compatibility or described non-text content (images, graphs etc). However, it likely supports searchable and selectable text based on OCR (Optical Character Recognition). Users with accessibility needs may not be able to use this content effectively. Please contact us at accessibilitysupport@springernature.com if you require assistance or an alternative format
Inaccessible, or known limited accessibility
No reading system accessibility options actively disabled
Publisher contact for further accessibility information: accessibilitysupport@springernature.com
HTTP:URL=https://doi.org/10.1007/978-3-642-61480-4
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783642614804
電子リソース
EB00243574

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA241-247.5
DC23:512.7
書誌ID 4000110104
ISBN 9783642614804

 類似資料