このページのリンク

<電子ブック>
Generalized Curvatures / by Jean-Marie Morvan
(Geometry and Computing. ISSN:18666809 ; 2)

1st ed. 2008.
出版者 (Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer)
出版年 2008
本文言語 英語
大きさ XI, 266 p. 107 illus., 36 illus. in color : online resource
著者標目 *Morvan, Jean-Marie author
SpringerLink (Online service)
件 名 LCSH:Geometry, Differential
LCSH:Mathematics -- Data processing  全ての件名で検索
LCSH:Image processing -- Digital techniques  全ての件名で検索
LCSH:Computer vision
FREE:Differential Geometry
FREE:Computational Mathematics and Numerical Analysis
FREE:Computer Imaging, Vision, Pattern Recognition and Graphics
一般注記 Motivations -- Motivation: Curves -- Motivation: Surfaces -- Background: Metrics and Measures -- Distance and Projection -- Elements of Measure Theory -- Background: Polyhedra and Convex Subsets -- Polyhedra -- Convex Subsets -- Background: Classical Tools in Differential Geometry -- Differential Forms and Densities on EN -- Measures on Manifolds -- Background on Riemannian Geometry -- Riemannian Submanifolds -- Currents -- On Volume -- Approximation of the Volume -- Approximation of the Length of Curves -- Approximation of the Area of Surfaces -- The Steiner Formula -- The Steiner Formula for Convex Subsets -- Tubes Formula -- Subsets of Positive Reach -- The Theory of Normal Cycles -- Invariant Forms -- The Normal Cycle -- Curvature Measures of Geometric Sets -- Second Fundamental Measure -- Applications to Curves and Surfaces -- Curvature Measures in E2 -- Curvature Measures in E3 -- Approximation of the Curvature of Curves -- Approximation of the Curvatures of Surfaces -- On Restricted Delaunay Triangulations
The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it
HTTP:URL=https://doi.org/10.1007/978-3-540-73792-6
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック

Springer eBooks 9783540737926
電子リソース
EB00229691

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA641-670
DC23:516.36
書誌ID 4000118142
ISBN 9783540737926

 類似資料