このページのリンク

<電子ブック>
Dirac Matter / edited by Bertrand Duplantier, Vincent Rivasseau, Jean-Nöel Fuchs
(Progress in Mathematical Physics. ISSN:21971846 ; 71)

1st ed. 2017.
出版者 (Cham : Springer International Publishing : Imprint: Birkhäuser)
出版年 2017
本文言語 英語
大きさ XII, 129 p. 45 illus., 44 illus. in color : online resource
著者標目 Duplantier, Bertrand editor
Rivasseau, Vincent editor
Fuchs, Jean-Nöel editor
SpringerLink (Online service)
件 名 LCSH:Mathematical physics
LCSH:Condensed matter
FREE:Mathematical Physics
FREE:Condensed Matter Physics
一般注記 Philip Kim: Graphene and Relativistic Quantum Physics -- Mark Goerbig and Gilles Montambaux : Dirac Fermions in Condensed Matter and Beyond -- Chuan Li, Sophie Guéron, Hélène Bouchiat : Quantum Transport in Graphene : Impurity Scattering as a Probe of the Dirac Spectrum.-Laurent Lévy : Experimental Signatures of Topological Insulators -- David Carpentier :Topology of Bands in Solids: From Insulators to Dirac Matter
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum", given by Hélène Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Guéron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Lévy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstrates that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science
HTTP:URL=https://doi.org/10.1007/978-3-319-32536-1
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック

Springer eBooks 9783319325361
電子リソース
EB00225941

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QC19.2-20.85
DC23:530.15
書誌ID 4000115808
ISBN 9783319325361

 類似資料