<電子ブック>
Champs algébriques / by Gérard Laumon, L. Moret-Bailly
(Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. ISSN:21975655 ; 39)
| 版 | 1st ed. 2000. |
|---|---|
| 出版者 | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer |
| 出版年 | 2000 |
| 本文言語 | フランス語 |
| 大きさ | XII, 208 p : online resource |
| 冊子体 | Champs algébriques / Gérard Laumon, Laurent Moret-Bailly |
| 著者標目 | *Laumon, Gérard author Moret-Bailly, L author SpringerLink (Online service) |
| 件 名 | LCSH:Algebraic geometry FREE:Algebraic Geometry |
| 一般注記 | Introduction -- La catégorie des S-espaces et sa sous-catégorie strictement pleine des S-espaces algébriques -- La 2-catégorie des S-groupoides -- La sous-2-catégorie strictement pleine des S-champs dans (Gr/S) -- La 2-catégorie des S-champs algébriques -- Points d'un S-champ algébrique; topologie de Zariski -- Quelques résultats de structure locale.-Critères valuatifs; morphismes universellement fermés, morphismes séparés, morphismes propres -- Caractérisation des espaces algébriques et des champs de Deligne-Mumford -- Parenthèse sur les topologies plates -- Les critères d'Artin pour qu'un S-champ soit algébrique -- Points algébriques, faisceaux résiduels, gerbes résiduelles, dimension -- Faisceaux sur le site lisse-étale d'un S-champ algébrique -- Modules quasi-cohérents sur un S-champ algébrique -- Constructions locales -- Modules cohérents sur les S-champs algébriques localement noethériens..... The theory of algebraic stacks emerged in the late sixties and early seventies in the works of P. Deligne, D. Mumford, and M. Artin. The language of algebraic stacks has been used repeatedly since then, mostly in connection with moduli problems: the increasing demand for an accurate description of moduli "spaces" came from various areas of mathematics and mathematical physics. Unfortunately the basic results on algebraic stacks were scattered in the literature and sometimes stated without proofs. The aim of this book is to fill this reference gap by providing mathematicians with the first systematic account of the general theory of (quasiseparated) algebraic stacks over an arbitrary base scheme. It covers the basic definitions and constructions, techniques for extending scheme-theoretic notions to stacks, Artin's representability theorems, but also new topics such as the "lisse-étale" topology Accessibility summary: This PDF is not accessible. It is based on scanned pages and does not support features such as screen reader compatibility or described non-text content (images, graphs etc). However, it likely supports searchable and selectable text based on OCR (Optical Character Recognition). Users with accessibility needs may not be able to use this content effectively. Please contact us at accessibilitysupport@springernature.com if you require assistance or an alternative format Inaccessible, or known limited accessibility No reading system accessibility options actively disabled Publisher contact for further accessibility information: accessibilitysupport@springernature.com HTTP:URL=https://doi.org/10.1007/978-3-540-24899-6 |
目次/あらすじ
所蔵情報を非表示
| 電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783540248996 |
|
電子リソース |
|
EB00243323 |
類似資料
この資料の利用統計
このページへのアクセス回数:2回
※2017年9月4日以降
