このページのリンク

<電子ブック>
Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck / by Jean-Michel Bismut, Shu Shen, Zhaoting Wei
(Progress in Mathematics. ISSN:2296505X ; 347)

1st ed. 2023.
出版者 Cham : Springer International Publishing : Imprint: Birkhäuser
出版年 2023
本文言語 英語
大きさ X, 184 p. 1 illus : online resource
著者標目 *Bismut, Jean-Michel author
Shen, Shu author
Wei, Zhaoting author
SpringerLink (Online service)
件 名 LCSH:Algebra, Homological
LCSH:K-theory
LCSH:Differential equations
LCSH:Geometry, Differential
FREE:Category Theory, Homological Algebra
FREE:K-Theory
FREE:Differential Equations
FREE:Differential Geometry
一般注記 Introduction -- Bott-Chern Cohomology and Characteristic Classes -- The Derived Category ${\mathrm{D^{b}_{\mathrm{coh}}}}$ -- Preliminaries on Linear Algebra and Differential Geometry -- The Antiholomorphic Superconnections of Block -- An Equivalence of Categories -- Antiholomorphic Superconnections and Generalized Metrics -- Generalized Metrics and Chern Character Forms -- The Case of Embeddings -- Submersions and Elliptic Superconnections -- Elliptic Superconnection Forms and Direct Images -- A Proof of Theorem 10-1 when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$. -- The Hypoelliptic Superconnections -- The Hypoelliptic Superconnection Forms -- The Hypoelliptic Superconnection Forms when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$ -- Exotic Superconnections and Riemann-Roch-Grothendieck -- Subject Index -- Index of Notation -- Bibliography
This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck theorem. One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections. Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian. Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource for manyresearchers in geometry, analysis, and mathematical physics.
HTTP:URL=https://doi.org/10.1007/978-3-031-27234-9
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783031272349
電子リソース
EB00235258

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA169
DC23:512.6
書誌ID 4001086229
ISBN 9783031272349

 類似資料