このページのリンク

<電子ブック>
Squigonometry: The Study of Imperfect Circles / by Robert D. Poodiack, William E. Wood
(SUMS Readings. ISSN:27305821)

1st ed. 2022.
出版者 Cham : Springer International Publishing : Imprint: Springer
出版年 2022
本文言語 英語
大きさ XIX, 289 p. 127 illus., 95 illus. in color : online resource
著者標目 *Poodiack, Robert D author
Wood, William E author
SpringerLink (Online service)
件 名 LCSH:Special functions
LCSH:Geometry
LCSH:Functional analysis
FREE:Special Functions
FREE:Geometry
FREE:Functional Analysis
一般注記 1. Introduction -- 2. Imperfection -- 3. A Squigonometry Introduction -- 4. p-metrics -- 5. Inverse squigonometric functions -- 6. The many values of Pi -- 7. Parametrizations -- 8. Arclength Parametrization -- 9. Integrating Squigonometric Functions -- 10. Three applications -- 11. Infinite series -- 12. Series and rational approximations -- 13. Alternate Coordinates -- 14. Hyperbolic Functions -- 15. Exponentials and Logarithms -- 16. Elliptic Integrals -- 17. Lemniscates and Ellipses -- 18. Geometry in the p-norm -- 19. Duality -- 20. Analytic Parametrizations -- A. Curve Menagerie -- B. Formulas and Integrals -- C. Parametrization Primer -- D. Proofs of Formulas and Theorems -- E. Alternate Pi Days -- F. Selected Exercise Hints and Solutions
This textbook introduces generalized trigonometric functions through the exploration of imperfect circles: curves defined by /x/p + /y/p = 1 where p ≥ 1. Grounded in visualization and computations, this accessible, modern perspective encompasses new and old results, casting a fresh light on duality, special functions, geometric curves, and differential equations. Projects and opportunities for research abound, as we explore how similar (or different) the trigonometric and squigonometric worlds might be. Comprised of many short chapters, the book begins with core definitions and techniques. Successive chapters cover inverse squigonometric functions, the many possible re-interpretations of π, two deeper dives into parameterizing the squigonometric functions, and integration. Applications include a celebration of Piet Hein’s work in design. From here, more technical pathways offer further exploration. Topicsinclude infinite series; hyperbolic, exponential, and logarithmic functions; metrics and norms; and lemniscatic and elliptic functions. Illuminating illustrations accompany the text throughout, along with historical anecdotes, engaging exercises, and wry humor. Squigonometry: The Study of Imperfect Circles invites readers to extend familiar notions from trigonometry into a new setting. Ideal for an undergraduate reading course in mathematics or a senior capstone, this book offers scaffolding for active discovery. Knowledge of the trigonometric functions, single-variable calculus, and initial-value problems is assumed, while familiarity with multivariable calculus and linear algebra will allow additional insights into certain later material
HTTP:URL=https://doi.org/10.1007/978-3-031-13783-9
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783031137839
電子リソース
EB00228367

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA351
DC23:515.5
書誌ID 4000986104
ISBN 9783031137839

 類似資料