このページのリンク

<電子ブック>
Stabilization of Kelvin-Voigt Damped Systems / by Kaïs Ammari, Fathi Hassine
(Advances in Mechanics and Mathematics. ISSN:18769896 ; 47)

1st ed. 2022.
出版者 Cham : Springer International Publishing : Imprint: Birkhäuser
出版年 2022
本文言語 英語
大きさ X, 150 p. 6 illus. in color : online resource
著者標目 *Ammari, Kaïs author
Hassine, Fathi author
SpringerLink (Online service)
件 名 LCSH:Differential equations
LCSH:System theory
LCSH:Control theory
LCSH:Mechanics, Applied
LCSH:Solids
FREE:Differential Equations
FREE:Systems Theory, Control
FREE:Solid Mechanics
一般注記 Preface -- Chapter 1. Preliminaries -- Chapter 2. Stability of elastic transmission systems with a local Kelvin-Voigt damping -- Chapter 3. Stabilization for the wave equation with singular Kelvin-Voigt damping -- Chapter 4. Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping -- Chapter 5. Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping -- Chapter 6. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping -- Chapter 7. Conclusion and perspectives -- Bibliography
This monograph examines the stability of various coupled systems with local Kelvin-Voigt damping. The development of this area is thoroughly reviewed along with the authors’ contributions. New results are featured on the fundamental properties of solutions of linear transmission evolution PDEs involving Kelvin-Voigt damping, with special emphasis on the asymptotic behavior of these solutions. The vibrations of transmission problems are highlighted as well, making this a valuable resource for those studying this active area of research. The book begins with a brief description of the abstract theory of linear evolution equations with a particular focus on semigroup theory. Different types of stability are also introduced along with their connection to resolvent estimates. After this foundation is established, different models are presented for uni-dimensional and multi-dimensional linear transmission evolution partial differential equations with Kelvin-Voigt damping. Stabilization of Kelvin-Voigt Damped Systems will be a useful reference for researchers in mechanics, particularly those interested in the study of control theory of PDEs
HTTP:URL=https://doi.org/10.1007/978-3-031-12519-5
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783031125195
電子リソース
EB00234665

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA370-380
DC23:515.35
書誌ID 4000979439
ISBN 9783031125195

 類似資料