このページのリンク

<電子ブック>
Almost Periodic and Almost Automorphic Functions in Abstract Spaces / by Gaston M. N'Guérékata

2nd ed. 2021.
出版者 Cham : Springer International Publishing : Imprint: Springer
出版年 2021
本文言語 英語
大きさ XII, 134 p : online resource
著者標目 *N'Guérékata, Gaston M author
SpringerLink (Online service)
件 名 LCSH:Differential equations
LCSH:Dynamical systems
LCSH:Difference equations
LCSH:Functional equations
LCSH:Integral equations
FREE:Differential Equations
FREE:Dynamical Systems
FREE:Difference and Functional Equations
FREE:Integral Equations
一般注記 1. Introduction and Preliminaries -- 2. Almost Automorphic Functions -- 3. Almost Automorphy of the Function f(t,x) -- 4. Differentiation and Integration -- 5. Pseudo Almost Automorphy -- 6. Stepanov-like Almost Automorphic Functions -- 7. Dynamical Systems and C0-Semigroups -- 8. Almost Periodic Functions with Values in a Locally Convex Space -- 9. Almost Period Functions with Values in a Non-Locally Convex Space -- 10. The Equation x'(t)=A(t)x(t)+f(t) -- 11. Almost Periodic Solutions of the Differential Equation in Locally Convex Spaces -- Bibliography.
This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading
HTTP:URL=https://doi.org/10.1007/978-3-030-73718-4
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783030737184
電子リソース
EB00237280

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA370-380
DC23:515.35
書誌ID 4000140879
ISBN 9783030737184

 類似資料