<電子ブック>
Invariant Probabilities of Markov-Feller Operators and Their Supports / by Radu Zaharopol
(Frontiers in Mathematics. ISSN:16608054)
版 | 1st ed. 2005. |
---|---|
出版者 | Basel : Birkhäuser Basel : Imprint: Birkhäuser |
出版年 | 2005 |
本文言語 | 英語 |
大きさ | XIII, 113 p : online resource |
著者標目 | *Zaharopol, Radu author SpringerLink (Online service) |
件 名 | LCSH:Probabilities LCSH:Geometry, Differential FREE:Probability Theory FREE:Differential Geometry |
一般注記 | Introduction -- 1. Preliminaries on Markov-Feller Operators -- 2. The KBBY Decomposition -- 3. Unique Ergodicity -- 4. Equicontinuity -- Bibliography -- Index In this book invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes are discussed. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, certain time series, etc. Rather than dealing with the processes, the transition probabilities and the operators associated with these processes are studied. Main features: - an ergodic decomposition which is a "reference system" for dealing with ergodic measures - "formulas" for the supports of invariant probability measures, some of which can be used to obtain algorithms for the graphical display of these supports - helps to gain a better understanding of the structure of Markov-Feller operators, and, implicitly, of the discrete-time homogeneous Feller processes - special efforts to attract newcomers to the theory of Markov processes in general, and to the topics covered in particular - most of the results are new and deal with topics of intense research interest HTTP:URL=https://doi.org/10.1007/b98076 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783764373443 |
|
電子リソース |
|
EB00229540 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA273.A1-274.9 DC23:519.2 |
書誌ID | 4000134254 |
ISBN | 9783764373443 |
類似資料
この資料の利用統計
このページへのアクセス回数:1回
※2017年9月4日以降