<電子ブック>
Complex Kleinian Groups / by Angel Cano, Juan Pablo Navarrete, José Seade
(Progress in Mathematics. ISSN:2296505X ; 303)
版 | 1st ed. 2013. |
---|---|
出版者 | Basel : Springer Basel : Imprint: Birkhäuser |
出版年 | 2013 |
本文言語 | 英語 |
大きさ | XX, 272 p : online resource |
著者標目 | *Cano, Angel author Navarrete, Juan Pablo author Seade, José author SpringerLink (Online service) |
件 名 | LCSH:Dynamical systems LCSH:Topological groups LCSH:Lie groups LCSH:Functions of complex variables FREE:Dynamical Systems FREE:Topological Groups and Lie Groups FREE:Several Complex Variables and Analytic Spaces |
一般注記 | Preface -- Introduction -- Acknowledgments -- 1 A glance of the classical theory -- 2 Complex hyperbolic geometry -- 3 Complex Kleinian groups -- 4 Geometry and dynamics of automorphisms of P2C -- 5 Kleinian groups with a control group -- 6 The limit set in dimension two -- 7 On the dynamics of discrete subgroups of PU(n,1) -- 8 Projective orbifolds and dynamics in dimension two -- 9 Complex Schottky groups -- 10 Kleinian groups and twistor theory -- Bibliography -- Index. This monograph lays down the foundations of the theory of complex Kleinian groups, a “newborn” area of mathematics whose origin can be traced back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can themselves be regarded as groups of holomorphic automorphisms of the complex projective line CP1. When we go into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere? or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories differ in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition; in the second, about an area of mathematics that is still in its infancy, and this is the focus of study in this monograph. It brings together several important areas of mathematics, e.g. classical Kleinian group actions, complex hyperbolic geometry, crystallographic groups and the uniformization problem for complex manifolds HTTP:URL=https://doi.org/10.1007/978-3-0348-0481-3 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783034804813 |
|
電子リソース |
|
EB00230244 |
類似資料
この資料の利用統計
このページへのアクセス回数:2回
※2017年9月4日以降