このページのリンク

<電子ブック>
Complex Kleinian Groups / by Angel Cano, Juan Pablo Navarrete, José Seade
(Progress in Mathematics. ISSN:2296505X ; 303)

1st ed. 2013.
出版者 Basel : Springer Basel : Imprint: Birkhäuser
出版年 2013
本文言語 英語
大きさ XX, 272 p : online resource
著者標目 *Cano, Angel author
Navarrete, Juan Pablo author
Seade, José author
SpringerLink (Online service)
件 名 LCSH:Dynamical systems
LCSH:Topological groups
LCSH:Lie groups
LCSH:Functions of complex variables
FREE:Dynamical Systems
FREE:Topological Groups and Lie Groups
FREE:Several Complex Variables and Analytic Spaces
一般注記   Preface -- Introduction -- Acknowledgments -- 1 A glance of the classical theory -- 2 Complex hyperbolic geometry -- 3 Complex Kleinian groups -- 4 Geometry and dynamics of automorphisms of P2C -- 5 Kleinian groups with a control group -- 6 The limit set in dimension two -- 7 On the dynamics of discrete subgroups of PU(n,1) -- 8 Projective orbifolds and dynamics in dimension two -- 9 Complex Schottky groups -- 10 Kleinian groups and twistor theory -- Bibliography -- Index.  
This monograph lays down the foundations of the theory of complex Kleinian groups, a “newborn” area of mathematics whose origin can be traced back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can themselves be regarded as groups of holomorphic automorphisms of the complex projective line CP1. When we go into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere? or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories differ in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition; in the second, about an area of mathematics that is still in its infancy, and this is the focus of study in this monograph. It brings together several important areas of mathematics, e.g. classical Kleinian group actions, complex hyperbolic geometry, crystallographic groups and the uniformization problem for complex manifolds
HTTP:URL=https://doi.org/10.1007/978-3-0348-0481-3
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783034804813
電子リソース
EB00230244

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA843-871
DC23:515.39
書誌ID 4000118883
ISBN 9783034804813

 類似資料