このページのリンク

<電子ブック>
The Spectrum of Hyperbolic Surfaces / by Nicolas Bergeron
(Universitext. ISSN:21916675)

1st ed. 2016.
出版者 Cham : Springer International Publishing : Imprint: Springer
出版年 2016
大きさ XIII, 370 p. 8 illus. in color : online resource
著者標目 *Bergeron, Nicolas author
SpringerLink (Online service)
件 名 LCSH:Geometry, Hyperbolic
LCSH:Harmonic analysis
LCSH:Dynamical systems
FREE:Hyperbolic Geometry
FREE:Abstract Harmonic Analysis
FREE:Dynamical Systems
一般注記 Preface -- Introduction -- Arithmetic Hyperbolic Surfaces -- Spectral Decomposition -- Maass Forms -- The Trace Formula -- Multiplicity of lambda1 and the Selberg Conjecture -- L-Functions and the Selberg Conjecture -- Jacquet-Langlands Correspondence -- Arithmetic Quantum Unique Ergodicity -- Appendices -- References -- Index of notation -- Index -- Index of names
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics
HTTP:URL=https://doi.org/10.1007/978-3-319-27666-3
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783319276663
電子リソース
EB00207289

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA685
DC23:516.9
書誌ID 4000118040
ISBN 9783319276663

 類似資料