<電子ブック>
Clifford Algebras and Lie Theory / by Eckhard Meinrenken
版 | 1st ed. 2013. |
---|---|
出版者 | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer |
出版年 | 2013 |
本文言語 | 英語 |
大きさ | XX, 321 p : online resource |
著者標目 | *Meinrenken, Eckhard author SpringerLink (Online service) |
件 名 | LCSH:Topological groups LCSH:Lie groups LCSH:Associative rings LCSH:Associative algebras LCSH:Mathematical physics LCSH:Geometry, Differential FREE:Topological Groups and Lie Groups FREE:Associative Rings and Algebras FREE:Mathematical Physics FREE:Differential Geometry FREE:Mathematical Methods in Physics |
一般注記 | Preface -- Conventions -- List of Symbols -- 1 Symmetric bilinear forms -- 2 Clifford algebras -- 3 The spin representation -- 4 Covariant and contravariant spinors -- 5 Enveloping algebras -- 6 Weil algebras -- 7 Quantum Weil algebras -- 8 Applications to reductive Lie algebras -- 9 D(g; k) as a geometric Dirac operator -- 10 The Hopf–Koszul–Samelson Theorem -- 11 The Clifford algebra of a reductive Lie algebra -- A Graded and filtered super spaces -- B Reductive Lie algebras -- C Background on Lie groups -- References -- Index This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics HTTP:URL=https://doi.org/10.1007/978-3-642-36216-3 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783642362163 |
|
電子リソース |
|
EB00239385 |
類似資料
この資料の利用統計
このページへのアクセス回数:8回
※2017年9月4日以降