<電子ブック>
Factorization of Matrix and Operator Functions: The State Space Method / by Harm Bart, Israel Gohberg, Marinus A. Kaashoek, André C.M. Ran
(Linear Operators and Linear Systems. ISSN:25043617 ; 178)
版 | 1st ed. 2008. |
---|---|
出版者 | Basel : Birkhäuser Basel : Imprint: Birkhäuser |
出版年 | 2008 |
本文言語 | 英語 |
大きさ | XII, 412 p : online resource |
著者標目 | *Bart, Harm author Gohberg, Israel author Kaashoek, Marinus A author Ran, André C.M author SpringerLink (Online service) |
件 名 | LCSH:Operator theory LCSH:Algebras, Linear LCSH:Number theory FREE:Operator Theory FREE:Linear Algebra FREE:Number Theory |
一般注記 | Motivating Problems, Systems and Realizations -- Motivating Problems -- Operator Nodes, Systems, and Operations on Systems -- Various Classes of Systems -- Realization and Linearization of Operator Functions -- Factorization and Riccati Equations -- Canonical Factorization and Applications -- Minimal Realization and Minimal Factorization -- Minimal Systems -- Minimal Realizations and Pole-Zero Structure -- Minimal Factorization of Rational Matrix Functions -- Degree One Factors, Companion Based Rational Matrix Functions, and Job Scheduling -- Factorization into Degree One Factors -- Complete Factorization of Companion Based Matrix Functions -- Quasicomplete Factorization and Job Scheduling -- Stability of Factorization and of Invariant Subspaces -- Stability of Spectral Divisors -- Stability of Divisors -- Factorization of Real Matrix Functions The present book deals with factorization problems for matrix and operator functions. The problems originate from, or are motivated by, the theory of non-selfadjoint operators, the theory of matrix polynomials, mathematical systems and control theory, the theory of Riccati equations, inversion of convolution operators, theory of job scheduling in operations research. The book systematically employs a geometric principle of factorization which has its origins in the state space theory of linear input-output systems and in the theory of characteristic operator functions. This principle allows one to deal with different factorizations from one point of view. Covered are canonical factorization, minimal and non-minimal factorizations, pseudo-canonical factorization, and various types of degree one factorization. Considerable attention is given to the matter of stability of factorization which in terms of the state space method involves stability of invariant subspaces.invariant subspaces HTTP:URL=https://doi.org/10.1007/978-3-7643-8268-1 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783764382681 |
|
電子リソース |
|
EB00240070 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA329-329.9 DC23:515.724 |
書誌ID | 4000117062 |
ISBN | 9783764382681 |
類似資料
この資料の利用統計
このページへのアクセス回数:3回
※2017年9月4日以降