このページのリンク

<電子ブック>
Factorization of Matrix and Operator Functions: The State Space Method / by Harm Bart, Israel Gohberg, Marinus A. Kaashoek, André C.M. Ran
(Linear Operators and Linear Systems. ISSN:25043617 ; 178)

1st ed. 2008.
出版者 Basel : Birkhäuser Basel : Imprint: Birkhäuser
出版年 2008
本文言語 英語
大きさ XII, 412 p : online resource
著者標目 *Bart, Harm author
Gohberg, Israel author
Kaashoek, Marinus A author
Ran, André C.M author
SpringerLink (Online service)
件 名 LCSH:Operator theory
LCSH:Algebras, Linear
LCSH:Number theory
FREE:Operator Theory
FREE:Linear Algebra
FREE:Number Theory
一般注記 Motivating Problems, Systems and Realizations -- Motivating Problems -- Operator Nodes, Systems, and Operations on Systems -- Various Classes of Systems -- Realization and Linearization of Operator Functions -- Factorization and Riccati Equations -- Canonical Factorization and Applications -- Minimal Realization and Minimal Factorization -- Minimal Systems -- Minimal Realizations and Pole-Zero Structure -- Minimal Factorization of Rational Matrix Functions -- Degree One Factors, Companion Based Rational Matrix Functions, and Job Scheduling -- Factorization into Degree One Factors -- Complete Factorization of Companion Based Matrix Functions -- Quasicomplete Factorization and Job Scheduling -- Stability of Factorization and of Invariant Subspaces -- Stability of Spectral Divisors -- Stability of Divisors -- Factorization of Real Matrix Functions
The present book deals with factorization problems for matrix and operator functions. The problems originate from, or are motivated by, the theory of non-selfadjoint operators, the theory of matrix polynomials, mathematical systems and control theory, the theory of Riccati equations, inversion of convolution operators, theory of job scheduling in operations research. The book systematically employs a geometric principle of factorization which has its origins in the state space theory of linear input-output systems and in the theory of characteristic operator functions. This principle allows one to deal with different factorizations from one point of view. Covered are canonical factorization, minimal and non-minimal factorizations, pseudo-canonical factorization, and various types of degree one factorization. Considerable attention is given to the matter of stability of factorization which in terms of the state space method involves stability of invariant subspaces.invariant subspaces
HTTP:URL=https://doi.org/10.1007/978-3-7643-8268-1
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9783764382681
電子リソース
EB00240070

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA329-329.9
DC23:515.724
書誌ID 4000117062
ISBN 9783764382681

 類似資料