このページのリンク

<電子ブック>
Local Homotopy Theory / by John F. Jardine
(Springer Monographs in Mathematics. ISSN:21969922)

1st ed. 2015.
出版者 New York, NY : Springer New York : Imprint: Springer
出版年 2015
大きさ IX, 508 p. 514 illus : online resource
著者標目 *Jardine, John F author
SpringerLink (Online service)
件 名 LCSH:Algebra, Homological
LCSH:K-theory
LCSH:Algebraic topology
FREE:Category Theory, Homological Algebra
FREE:K-Theory
FREE:Algebraic Topology
一般注記 Preface -- 1 Introduction -- Part I Preliminaries -- 2 Homotopy theory of simplicial sets -- 3 Some topos theory -- Part II Simplicial presheaves and simplicial sheaves -- 4 Local weak equivalences -- 5 Local model structures -- 6 Cocycles -- 7 Localization theories -- Part III Sheaf cohomology theory -- 8 Homology sheaves and cohomology groups -- 9 Non-abelian cohomology -- Part IV Stable homotopy theory -- 10 Spectra and T-spectra -- 11 Symmetric T-spectra -- References -- Index
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences
HTTP:URL=https://doi.org/10.1007/978-1-4939-2300-7
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9781493923007
電子リソース
EB00205091

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA169
DC23:512.6
書誌ID 4000116669
ISBN 9781493923007

 類似資料