このページのリンク

<電子ブック>
Class Field Theory / by Nancy Childress
(Universitext. ISSN:21916675)

1st ed. 2009.
出版者 New York, NY : Springer New York : Imprint: Springer
出版年 2009
本文言語 英語
大きさ X, 226 p : online resource
著者標目 *Childress, Nancy author
SpringerLink (Online service)
件 名 LCSH:Algebraic fields
LCSH:Polynomials
LCSH:Number theory
FREE:Field Theory and Polynomials
FREE:Number Theory
一般注記 A Brief Review -- Dirichlet#x2019;s Theorem on Primes in Arithmetic Progressions -- Ray Class Groups -- The Id#x00E8;lic Theory -- Artin Reciprocity -- The Existence Theorem, Consequences and Applications -- Local Class Field Theory
Class field theory, the study of abelian extensions of algebraic number fields, is one of the largest branches of algebraic number theory. It brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. Some of its consequences (e.g., the Chebotarev density theorem) apply even to nonabelian extensions.   This book is an accessible introduction to class field theory. It takes a traditional approach in that it presents the global material first, using some of the original techniques of proof, but in a fashion that is cleaner and more streamlined than most other books on this topic.   It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included exercises throughout the text.   Professor Nancy Childress is a member of the Mathematics Faculty at Arizona State University
HTTP:URL=https://doi.org/10.1007/978-0-387-72490-4
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック


Springer eBooks 9780387724904
電子リソース
EB00230952

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA247-247.45
LCC:QA161.P59
DC23:512.3
書誌ID 4000115951
ISBN 9780387724904

 類似資料