<電子ブック>
An Invitation to Morse Theory / by Liviu Nicolaescu
(Universitext. ISSN:21916675)
版 | 1st ed. 2007. |
---|---|
出版者 | New York, NY : Springer New York : Imprint: Springer |
出版年 | 2007 |
本文言語 | 英語 |
大きさ | XIV, 242 p. 32 illus : online resource |
著者標目 | *Nicolaescu, Liviu author SpringerLink (Online service) |
件 名 | LCSH:Global analysis (Mathematics) LCSH:Manifolds (Mathematics) FREE:Global Analysis and Analysis on Manifolds FREE:Manifolds and Cell Complexes |
一般注記 | Morse Functions -- The Topology of Morse Functions -- Applications -- Basics of Complex Morse Theory -- Exercises and Solutions This self-contained treatment of Morse Theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory (over the reals). The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory. This is the first textbook to include topics such as Morse-Smale flows, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds. Liviu Nicolaescu is Associate Professor of Mathematics at University of Notre Dame HTTP:URL=https://doi.org/10.1007/978-0-387-49510-1 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9780387495101 |
|
電子リソース |
|
EB00230933 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA614-614.97 DC23:514.74 |
書誌ID | 4000115676 |
ISBN | 9780387495101 |
類似資料
この資料の利用統計
このページへのアクセス回数:5回
※2017年9月4日以降