<電子ブック>
From Classical to Modern Analysis / by Rinaldo B. Schinazi
版 | 1st ed. 2018. |
---|---|
出版者 | Cham : Springer International Publishing : Imprint: Birkhäuser |
出版年 | 2018 |
大きさ | XII, 270 p. 1 illus : online resource |
著者標目 | *Schinazi, Rinaldo B author SpringerLink (Online service) |
件 名 | LCSH:Functional analysis LCSH:Functions of real variables LCSH:Measure theory FREE:Functional Analysis FREE:Real Functions FREE:Measure and Integration |
一般注記 | Preface -- Real Numbers -- Sequences of Real Numbers -- Limits Superior and Inferior of a Sequence -- Numerical Series -- Convergence of Functions -- Power Series -- Metric Spaces -- Topology in a Metric Space -- Continuity on Metric Spaces -- Measurable Sets and Measurable Functions -- Measures -- The Lebesgue Integral -- Integrals with Respect to Counting Measures -- Riemann and Lebesgue Integrals -- Modes of Convergance -- References This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration. Designed for a two-semester introduction to real analysis, the text gives special attention to metric spaces and topology to familiarize students with the level of abstraction and mathematical rigor needed for graduate study in real analysis. Fitting in between analysis textbooks that are too formal or too casual, From Classical to Modern Analysis is a comprehensive, yet straightforward, resource for studying real analysis. To build the foundational elements of real analysis, the first seven chapters cover number systems, convergence of sequences and series, as well as more advanced topics like superior and inferior limits, convergence of functions, and metric spaces. Chapters 8 through 12 explore topology in and continuity on metric spaces and introduce the Lebesgue integrals. The last chapters are largely independent and discuss various applications of the Lebesgue integral. Instructors who want to demonstrate the uses of measure theory and explore its advanced applications with their undergraduate students will find this textbook an invaluable resource. Advanced single-variable calculus and a familiarity with reading and writing mathematical proofs are all readers will need to follow the text. Graduate students can also use this self-contained and comprehensive introduction to real analysis for self-study and review. HTTP:URL=https://doi.org/10.1007/978-3-319-94583-5 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783319945835 |
|
電子リソース |
|
EB00197678 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA319-329.9 DC23:515.7 |
書誌ID | 4000115609 |
ISBN | 9783319945835 |
類似資料
この資料の利用統計
このページへのアクセス回数:3回
※2017年9月4日以降