<電子ブック>
Riemannian Geometry and Geometric Analysis / by Jürgen Jost
(Universitext. ISSN:21916675)
版 | 2nd ed. 1998. |
---|---|
出版者 | Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer |
出版年 | 1998 |
本文言語 | 英語 |
大きさ | XIII, 458 p : online resource |
冊子体 | Riemannian geometry and geometric analysis / Jürgen Jost |
著者標目 | *Jost, Jürgen author SpringerLink (Online service) |
件 名 | LCSH:Geometry, Differential FREE:Differential Geometry |
一般注記 | 1. Foundational Material -- 2. De Rham Cohomology and Harmonic Differential Forms -- 3. Parallel Transport, Connections, and Covariant Derivatives -- 4. Geodesics and Jacobi Fields -- A Short Survey on Curvature and Topology -- 5. Morse Theory and Closed Geodesics -- 6. Symmetric Spaces and Kähler Manifolds -- 7. The Palais-Smale Condition and Closed Geodesics -- 8. Harmonic Maps -- 9. Variational Problems from Quantum Field Theory -- Appendix A: Linear Elliptic Partial Differential Equation -- A.1 Sobolev Spaces -- A.2 Existence and Regularity Theory for Solutions of Linear Elliptic Equations -- Appendix B: Fundamental Groups and Covering Spaces From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry,e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. It is a good introduction to Riemannian geometry. The book is made more interesting by the perspectives in various sections, where the author mentions the history and development of the material and provides the reader with references." Math. Reviews. The second edition contains a new chapter on variational problems from quantum field theory, in particular the Seiberg-Witten and Ginzburg-Landau functionals. These topics are carefully and systematically developed, and the new edition contains a thorough treatment of the relevant background material, namely spin geometry and Dirac operators. The new material is based on a course "Geometry and Physics" at the University of Leipzig that was attented by graduate students, postdocs and researchers from other areas of mathematics. Much of the material is included here for the first time in a textbook, and the book will lead the reader to some of the hottest topics of contemporary mathematical research Accessibility summary: This PDF is not accessible. It is based on scanned pages and does not support features such as screen reader compatibility or described non-text content (images, graphs etc). However, it likely supports searchable and selectable text based on OCR (Optical Character Recognition). Users with accessibility needs may not be able to use this content effectively. Please contact us at accessibilitysupport@springernature.com if you require assistance or an alternative format Inaccessible, or known limited accessibility No reading system accessibility options actively disabled Publisher contact for further accessibility information: accessibilitysupport@springernature.com HTTP:URL=https://doi.org/10.1007/978-3-662-22385-7 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9783662223857 |
|
電子リソース |
|
EB00243055 |
類似資料
この資料の利用統計
このページへのアクセス回数:3回
※2017年9月4日以降