このページのリンク

<電子ブック>
Field Arithmetic / by Michael D. Fried, Moshe Jarden
(Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. ISSN:21975655 ; 11)

1st ed. 1986.
出版者 (Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer)
出版年 1986
本文言語 英語
大きさ XVII, 460 p. 2 illus : online resource
著者標目 *Fried, Michael D author
Jarden, Moshe author
SpringerLink (Online service)
件 名 LCSH:Algebraic fields
LCSH:Polynomials
LCSH:Mathematical logic
LCSH:Algebraic geometry
FREE:Field Theory and Polynomials
FREE:Mathematical Logic and Foundations
FREE:Algebraic Geometry
一般注記 1. Infinite Galois Theory and Profinite Groups -- 2. Algebraic Function Fields of One Variable -- 3. The Riemann Hypothesis for Function Fields -- 4. Plane Curves -- 5. The ?ebotarev Density Theorem -- 6. Ultraproducts -- 7. Decision Procedures -- 8. Algebraically Closed Fields -- 9. Elements of Algebraic Geometry -- 10. Pseudo Algebraically Closed Fields -- 11. Hilbertian Fields -- 12. The Classical Hilbertian Fields -- 13. Nonstandard Structures -- 14. Nonstandard Approach to Hilbert’s Irreducibility Theorem -- 15. Profinite Groups and Hilbertian Fields -- 16. The Haar Measure -- 17. Effective Field Theory and Algebraic Geometry -- 18. The Elementary Theory of e-free PAC Fields -- 19. Examples and Applications -- 20. Projective Groups and Frattini Covers -- 21. Perfect PAC Fields of Bounded Corank -- 22. Undecidability -- 23. Frobenius Fields -- 24. On ?-free PAC Fields -- 25. Galois Stratification -- 26. Galois Stratification over Finite Fields -- Open Problems -- References
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
HTTP:URL=https://doi.org/10.1007/978-3-662-07216-5
目次/あらすじ

所蔵情報を非表示

電子ブック オンライン 電子ブック

Springer eBooks 9783662072165
電子リソース
EB00229536

書誌詳細を非表示

データ種別 電子ブック
分 類 LCC:QA247-247.45
LCC:QA161.P59
DC23:512.3
書誌ID 4000110705
ISBN 9783662072165

 類似資料