<電子ブック>
Operational Calculus : A Theory of Hyperfunctions / by Kosaku Yosida
(Applied Mathematical Sciences. ISSN:2196968X ; 55)
版 | 1st ed. 1984. |
---|---|
出版者 | New York, NY : Springer New York : Imprint: Springer |
出版年 | 1984 |
本文言語 | 英語 |
大きさ | X, 170 p : online resource |
冊子体 | Operational calculus : a theory of hyperfunctions / K. Yosida ; : pbk |
著者標目 | *Yosida, Kosaku author SpringerLink (Online service) |
件 名 | LCSH:Mathematical analysis LCSH:Mathematics FREE:Analysis FREE:Mathematics |
一般注記 | I. Integration Operator h and Differentiation Operator s (Classes of Hyperfunctions: C and CH) -- I. Introduction of the Operator h Through the Convolution Ring C -- II. Introduction of the Operator s Through the Ring CH -- III. Linear Ordinary Differential Equations with Constant Coefficients -- IV. Fractional Powers of Hyperfunctions h, s and $$\frac{I}{{S - \alpha }}$$ -- V. Hyperfunctions Represented by Infinite Power Series in h -- II. Linear Ordinary Differential Equations with Linear Coefficients (The Class C/C of Hyperfunctions) -- VI. The Titchmarsh Convolution Theorem and the Class C/C -- VII. The Algebraic Derivative Applied to Laplace’s Differential Equation -- III. Shift Operator exp(??s) and Diffusion Operator exp(??s1/2) -- VIII. Exponential Hyperfunctions exp(??s) and exp(??s1/2) -- IV. Applications to Partial Differential Equations -- IX. One DimensionaL Wave Equation -- X. Telegraph Equation -- X. (cont.) -- XI. Heat Equation -- Answers to Exercises -- Formulas and Tables -- References -- Propositions and Theorems in Sections In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients Accessibility summary: This PDF is not accessible. It is based on scanned pages and does not support features such as screen reader compatibility or described non-text content (images, graphs etc). However, it likely supports searchable and selectable text based on OCR (Optical Character Recognition). Users with accessibility needs may not be able to use this content effectively. Please contact us at accessibilitysupport@springernature.com if you require assistance or an alternative format Inaccessible, or known limited accessibility No reading system accessibility options actively disabled Publisher contact for further accessibility information: accessibilitysupport@springernature.com HTTP:URL=https://doi.org/10.1007/978-1-4612-1118-1 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9781461211181 |
|
電子リソース |
|
EB00246952 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QA299.6-433 DC23:515 |
書誌ID | 4000105225 |
ISBN | 9781461211181 |
類似資料
この資料の利用統計
このページへのアクセス回数:5回
※2017年9月4日以降