<電子ブック>
Singularity Theory and Gravitational Lensing / by Arlie O. Petters, Harold Levine, Joachim Wambsganss
(Progress in Mathematical Physics. ISSN:21971846 ; 21)
版 | 1st ed. 2001. |
---|---|
出版者 | Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser |
出版年 | 2001 |
本文言語 | 英語 |
大きさ | XXV, 603 p : online resource |
著者標目 | *Petters, Arlie O author Levine, Harold author Wambsganss, Joachim author SpringerLink (Online service) |
件 名 | LCSH:Mathematical physics LCSH:Mathematics LCSH:Geometry, Differential LCSH:Astrophysics FREE:Mathematical Methods in Physics FREE:Applications of Mathematics FREE:Differential Geometry FREE:Astrophysics |
一般注記 | I. INTRODUCTION -- 1 Historical Highlights -- 2 Central Problems -- II. ASTROPHYSICAL ASPECTS -- 3 Basic Physical Concepts -- 4 Physical Applications -- 5 Observations of Gravitational Lensing -- III. MATHEMATICAL ASPECTS -- 6 Time Delay and Lensing Maps -- 7 Critical Points and Stability -- 8 Classification and Genericity of Stable Lens Systems -- 9 Local Lensing Geometry -- 10 Morse Inequalities -- 11 Counting Lensed Images: Single-Plane Case -- 12 Counting Lensed Images: Multiplane Case -- 13 Total Magnification -- 14 Computing the Euler Characteristic -- 15 Global Geometry of Caustics -- Index of Notation This monograph, unique in the literature, is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Among the lensing topics discussed are multiple quasars, giant luminous arcs, Einstein rings, the detection of dark matter and planets with lensing, time delays and the age of the universe (Hubble’s constant), microlensing of stars and quasars. The main part of the book---Part III---employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation and solve certain key lensing problems. Results are published here for the first time. Mathematical topics discussed: Morse theory, Whitney singularity theory, Thom catastrophe theory, Mather stability theory, Arnold singularity theory, and the Euler characteristic via projectivized rotation numbers. These tools are applied to the study of stable lens systems, local and global geometry of caustics, caustic metamorphoses, multiple lens images, lensed image magnification, magnification cross sections, and lensing by singular and nonsingular deflectors. Examples, illustrations, bibliography and index make this a suitable text for an undergraduate/graduate course, seminar, or independent these project on gravitational lensing. The book is also an excellent reference text for professional mathematicians, mathematical physicists, astrophysicists, and physicists HTTP:URL=https://doi.org/10.1007/978-1-4612-0145-8 |
目次/あらすじ
所蔵情報を非表示
電子ブック | 配架場所 | 資料種別 | 巻 次 | 請求記号 | 状 態 | 予約 | コメント | ISBN | 刷 年 | 利用注記 | 指定図書 | 登録番号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
電子ブック | オンライン | 電子ブック |
|
|
Springer eBooks | 9781461201458 |
|
電子リソース |
|
EB00230217 |
書誌詳細を非表示
データ種別 | 電子ブック |
---|---|
分 類 | LCC:QC19.2-20.85 DC23:530.15 |
書誌ID | 4000104925 |
ISBN | 9781461201458 |
類似資料
この資料の利用統計
このページへのアクセス回数:6回
※2017年9月4日以降